
為滿足能源需求,高容量電池體系如鋰硫電池、鋰-空氣電池、鋰金屬電池等成為研究熱點。在這些體系中,鋰金屬負極存在許多問題:
(1)鋰枝晶的生長容易引發短路,造成安全隱患;
(2)固體電解質界面膜(Solid electrolyteinter phase, SEI)的不穩定性,導致電解液的消耗并降低電池庫倫效率和循環壽命,這些問題嚴重阻礙了這些高容量電池體系的發展和實際應用。
固態電解質具有較高的離子電導率和一定的機械強度,在很大程度上可提高鋰電池安全性,即使在全固態鋰電池(All-solid-state Li batteries,ASSLBs)中發生短路,不可燃的固態電解質也可避免著火和爆炸的發生。
另外,固態電解質可保證電池的高能量/功率密度和長循環壽命,在提高電池穩定性方面有很大發展潛力。但電解質-電極間往往有較大界面電阻,阻礙了離子傳輸。
最近,Luo等通過在石榴石型固態電解質表面沉積硅層,實現電解質表面從疏鋰到親鋰的轉變,減小固-固界面電阻,對提高鋰金屬電池的安全穩定性有重要意義。
Figure 1. Transitionfrom Super-lithiophobicity to Super-lithiophilicity of Garnet leads to a muchsmaller interfacial resistance.
實驗以Nb、Ca共摻雜Li7La3Zr2O12為研究體系,制備Li6.85La2.9Ca0.1Zr1.75Nb0.25O12(LLZ)固態電解質。其中Nb可穩定立方相,增強鋰離子傳導;Ca可降低燒結溫度。通過PECVD在表面沉積很薄的硅層,可使界面電阻減小7倍,并保持穩定的循環性能。該團隊還通過理論計算對該現象進行論證。
綜上,該工作提出通過沉積親鋰金屬可有效降低固態電解質-電極界面電阻,對提高鋰金屬電池的安全性具有指導意義。
Figure 2.Evaluation of LLZ wettability with Li metal. (a) Schematic showing the designed LLZ pellet with only one half (orange) selectively coated with amorphous Si.(b) SEM image showing the contrast between the bare LLZ area and the Si-coatedarea. (c) A homemade setup for the wettability evaluation, where molten Li was loaded in a stainless steel boat on a hot plate (~200 °C). Digitalimages of the half-coated LLZ pellet before and after dipping in molten Li for.(d) 0, (e) 1, and (f) 4 s. This shows the dramatic wettability transition of LLZ from superlithiophobicity to superlithiophilicity using an amorphous Si coating.
Figure 3. Electrochemical performance of symmetriccells using Si-coated and bare LLZ. Schematic illustration showing the structure of symmetric cells with (a) LLZ or (b) Si-coated LLZ SSEs.(c)Electrochemical impedance spectroscopy (EIS) measurements of symmetric cells where the interfacial resistance of the Si-coated garnet cell was significantlydecreased. (inset) Digital image of a Li/Si-coated LLZ/Li symmetric cell. (d)Long-term cycling performance of the Li/Si-coated LLZ/Li symmetric cell at current densities of 0.05 and 0.1mA/cm2. (e) Voltage profiles of theLi/Si-coated LLZ/Li symmetriccell at current densities of 0.1 and 0.2 mA/cm2.
相關研究成果發表在著名刊物Journal of the American Chemical Society上(DOI:10.1021/jacs.6b06777. WeiLuo,Yunhui Gong,Yizhou Zhu,Kun Kelvin Fu et al. Transition from Superlithiophobicity to Superlithiophilicity of Garnet Solid-State Electrolyte.J. Am. Chem. Soc. 2016.)
